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A GENE}ALIZATION OF THE DIVIDE-SORT-MERGE

STRATEGY FOR SORTING NETWORKS

by

David C. Van Voorhis -

1 o
ABSTRACT o -

/75;’ s;

"With a few notable exceptions the best sorfing networks ‘known ha-c
emploved a "divide-sort-merge" strategy. That is, the N 1éputs are
divided into 2 groups - ~ normally of size f;Ni- and géﬂl,% - -
that are sorted inrdependently and then "'merged" together to form a si:ugle
sorted sequence. An N-sorter network that uses this strategy consists
of 2 smaller sorting networks followed by a merge network. The best
merge networks known are also constructed recursively, using 2 smaller
merge networks followed by a simple arrangement of f;;i\- 1 comparators.

' weicbnéider:; generalizatian of the divide-sort-merge atrategy in
which the N inputs :ve divided into gié;é’ disjoint groups that are
sorted independently and then merged together.(}Tye merge network that

Ny
combines these g sorted groups uses d > 2 smaller merge networks as

Ao

an initial subnetwork. The two parsmeters g and d together define

what we call a " [g,d] " strategy.

* Here |x] denotes the smallest integer greater than or equal to x,
whereas |x] denotes the largest integer less than or equal to x.
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A [g,d] N-sorter network consists of g smaller sorting networks
followed by a [g,d] merge network., The initial portion of the [g,d]
merge network coriists of d smaller merge networks; the final portien,
which we call the "f-network,” includes whatever additional comparatoss
are required to complete the merge. When g =d =2, the f-aetwork is
a simple arrangement of [#N] - 1 comparators; however, for larger
g,d the structure of the [g,d] f-network becomes increasingly complicated,

In this paper we describe how to construct [g,d] f-networks for
arbitrary g,d. For N > 8 the result’ng [g,d] N-sorter networks are
more economical than any previous networks that use the divide-sort-
merge strategy; for N > 34 the resulting networks are more economical

than previous networks of any comstruction., Tue [4,4] N-sorter network
1
3

1
comparators, which represents an asymptotic improvement of 1 N(logeN)

described in this paper requires % N(logaN)2 N(logaN) + O(N)
comparators over the best previous N-sorter., We indicate that special
constructions (not described in this paper) have beer found for [2",2M)
f-networks, which lead to an N-sorter network that reqiires only

.25 N(logzN)2 - .372 N(logzN) + O(N) comparators,
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I. Introducticn

A comparator retwork with 4 inputs is illustrated in Fig. 1(a),

Each of the 5 comparators, iabeled A, B, C, D, and E, compares its
two inputs and emits the smaller on its higher output lead and the larger
on its lower output lead. An abbreviated diagram for this comparator net-
work is given in Fig, 1(b). where each comparator is replaced by a vertical
line connecting the two comparands,

A comparator network with N input and output leads is called an

*
N-sorter network, or simply an N-sorter, if for any multiset of inputs

1= {11,12,...,1N}, the resulting outputs O = {01’0?""’°N} satisfy:

1) O 1is a permutation of I; and 2) o, <o if j<k. The net-

J k

work depicted in Fig., 1 is u h-sorter, since comparators A through D

move the smallest input to o_. and the largest input to o and then

1 y?
E orders the remaining two inputs,

From an engineering viewpoint it may be desirable to use as few
comparators as possible when constructing a network to sort N inputs,
(An alternative design objective would be to minimize the delay required
to sort N items.) Let S(N) represent the minimum number of compara-
tors required by an N-sorter network. R. W. Floyd and D, E. Knuth [ 2 ]
have detcrmined S(N) for N <8 by proving a lower bound for 5(N)
that is precisely equal to che nuamber of comparators actually contained
in the most sconomical N-sorter notwork known. However, for N > 8, the

value of S(N) and even the asymptiotic behavior of the function remaia

an open question, The strongest lower bound known for §'N), proved by

* A multisot is like a set except that it may contain repetitions of
elements, See D. E. Knuth [ 1 ],




Yy o
— m o :

2 . s

13 = 0y

i’b Ou
()

Yy o |

12 rl 02

1y , —o, |

1‘& oy .
(v) ’ -

" Mg. 1. b~sorter network, %
¢
¥
f




D. Van Voorhis [ 3 ], increases as N(logzN), whereas the strongest upper
bound known - - i.e., the number of comparators actually required by the
most economical N-sorter known, designed by K. E. Batcher [ 4 ] and im-
proved by M, W. Green [ 5 ] ~ ~ increases as N(logzN)a.

Batcher's N-sorter network contains B(N) comparators, where
B(N) = =.1,-r¢(1o1;?_,u)2 - ‘l‘N(logzN) + N + of1), (1)

Although Green has been able to improve upon Batcher's networks, the net
effect of Green's modification is simply to reduce the coefficient in the
linear term of Equation (1) from unity to %%. In this paper we preseut
an extension of Batcher's constructions which reduces the coefficient of
N(1og2N) in (1) from -~ % to - %. Our construction achieves an im-
provgment of '”'%E N(logEN) over tne best previous networks, although
the asymptotic growth is still iN(logEN)e. We indicate that a modifi-

cation of our construction, which is too complicated to include here,

~

reduces the coefficient of N(logzN) in (1) to -.372.
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II. The Divide~sort-merge Strategy

It is not always eusy to determine whether a given comparator net-
work is ai N-sorter, For example, it can be shown that the comparator
network in Fig. 2(b) is & 4-sorter whereas that in Fig. 2(a} 1is not. Ome
way to check a network is co see whetker it will sort all N! persutations
of the numbers 1,2,...,N as inputs. However, the followiag important
theorem reduces to 2N the number of input patterne required to test

the design of an N-sorter network,

Theorem: (Zero-One Frinciple)
A comparator network with N inputs and N outputs is an N-sorter
if and only if it will sort all 2N combinations of N inputs for which ]

each input is either 0 or 1. (See[ 2, 5 ].)

Proof:*

The "only if" portion of the theorem is obvious; to prove the re-
mainder of the theorem we show that if a comparator network C is not
an N-sorter network, then there is at least one combination of 0O's &nd

1's as inputs that C <fails to sort,

i, NSt e

Suppose that C is not an N-sorter network, so that for some mul-

ity oF

tiset of imputs 7T = {11,12,...,1N] it yields the incompletely ordered

outputs O(I) = {01,02,...,0N}. This means that, although O(I1) is a

permutation of I, oJ > ey

Now it is easily verified (by induction) that if 2(x) 4is any non-

for some indices satisfying 1< j <k <N,

decreasing function (i.e. if x <y implies that t(x) < 2(y), ) then

* This proof was suggested to the author by D. E. Knuth,
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since max{f(x),f(y)] = £(max[x,y]),

O({£(3)),2(1y)s s t(1}) = {£(0)),2(0,),.00s2(0)}.  (2)

N

Therefcre, using

f{x) = (3)

we obtain the inputs I = {f(il),f(iz),...,f(in)}, which is a combi-
nation of O's and 1's that C fails to sort, since f(oj) =1>
f(Ok) =0,

Q.E.D.

The theorem is illustrated in Fig. 3. The imputs I = {1,0,1,0}
are applied to the 4 input leads of each network in Fig. 2. The first
petwork fails to arrange the inmputs into non-decreasing order; therefore,
it is not a 4-sorter network, The second network is a lL-sortar since it
will order properly these inputs and also the other 15 combinations of
O0's and 1's @as inputs,

Although 2N grows much more slowly than N, it is not feasible to
test large networks for 2N different combinations of inputs. Therefore,
if we desire large"sorting networks, we must build them in such a way
that we can prove "by construction’ that they will arrange all combina-
tions of inputs into non-decreasing order. The Zero-One Principle is

helpful in developirg such proofs.
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The most successful strategy for designing large sorting networks,

suggested by R. C. Bose and R. J. Nelson [ 6 ], has been to build them
out of smaller sorting networks, The inputs are divided into two groups
that are sorted separately and then combined, or merged, to form a sin-

gle sorted multiset. This divide-sort-mergg strategy is illustrated in

Fig. 4 by the N-sorter netwcrk T, which consists of:

i) an m-sorter network that operates on the inputs
{11,12,...,1m} to produce the sorted multiset X =
{xl,xa,...,rm}; and

ii)} an n-sorter network, where n = N - m, that trans-

forms the imputs i 1m+2""’iN] into the sorted

m+1?

multiset Y = [yl,ye,...,yn}; followed by

111) an (m,n) merge network that combines X and Y into

the single sorted multiset C = {01,02,...,0N].

We can use the divide-sort merge strategy recursively to achieve
N-sorter networks for arbitrary N, provided we can construct the
necessary merge networks. Bose and Nelson suggested building an {m,n)
merge network out of three smaller merge networks arranged in a pattern
resembling the final .aree comparators of the 4-sorter in Fig. 1. For
exaiple, when m and n are both even and m < n, Bose and Nelson's
(m,n) merge network consists of the following. (See Fig. 5.)

EN1; a (#m,4n) merge network that determines the smallest
#m members of O, namely 01’02,...’°im; and

BN2: a (#m,$n) merge network that determines the largest

#m members of 0O; followed by
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BN3: a (4n,3n) merge network that determines the remaining
n members of O,

K. E. Batcher [ 4 ] proposed a different merging strategy which is
more economical than Bose and Nelson's, and which has not been'improved
upon, The general (m,n) merge network is defined recursively, beginning
with the (1,1) merge network, which is a single comparator. When m
and n are both even integers greater than one, Batcher's (m,n) merge
network consists of the following. (See Fig. 6.)

Bl: a (#m,%n) merge network that combines the odd members

Xo = {xl,x3,...,xm_1} and YO = {yl’Y3J""yn_1} to

RERm o rorng: o

form the odd members of an intermediate multiset v,
namely V= {vl,v3,...,vm+n_1}; and

B2: a (ﬁm,ﬁn) merge network thet merges the even members
X, and Y  to form V_ = {ve,vh,...,vm+n}; followed by

B3: the #(m+n)-1 comparators 0 < k < #(min)-1,

Vors2 Vok+3?
Since Batcher's (m,n) merge network is the simplest example of s more
general strategy described in the next two sections, it is instructive to

work through the proof that the network described above and depicted in o

Fig. 6 leaves the outputs O = {01’02""’°m+n} sorted.

Suppose that the network T depictud in Fig. 4 consists of any

T iaicie ol AT

m-sorter network, any n-sorter network, and Batcher's (m,n) merge net-
work. Clearly the (m,n) merge network orders O iff t is an (m+n)- R -
sorter network, Therefore, the Zero-One Principle guarantees that the
t (m,n) merge network orders O iff T sorts s’l combinations of m+n

O's and 1's as inputs,
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For any combination of O's and 1's as inputs to T, the m-
sorter sorta X while the n-sorter sorts Y. The sorted multiset X
consists of r O's followed by m-r 1's, and Y contains s O's
followed by n-s 1's, where for different combinations of inputs to
T, r and s assume all combinations of the velues 0 < r <m;
0<8s<n, Let n represent the number of O's that go into VO,
that is, the number of O's 1in xo Plus the number in Yo' Let n,

represent the number of O's that go into Ve. Then
n,<mn <1 +2 &)

since each of the two sorted multisets X sand Y contributes either the
same number of O's to Vb and Vé or else one more QO to Vb.

After the odd and even members of X and Y have been merged to
form Vo and Ve, the following situation exista:

1) V, and V_ are each ordered.

2) The first 2n_ elements of V are, therefore, all O.
3) The remaining m + n - 2n_ elements are:
a) all 1 ifr =n; or
o e

b) O followed by 1's if n =n +1; or

¢) 010 followed by 2's if n, = n 4+ 2.

The elements of V are sorted except in Case c) which requires an

additional comparator for the adjacent peir v v

. For
o on +
a2n +2 <n 3

different combinations of inputs to T, n, and n, will assume all of
the values O,l,,..,4(m+n). Case c) can occur for easch of the possible

values of n_ such that n =n, +2< #(m+n). Therefore, the comparavors

o

- "f"*}"t\"ﬂ&fﬂéﬂi&

P A I
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listed in B3 above are both necessary and sufficient to complete the
merge.

Batcher's meige strategy is illustrsted by the 8-sorter network in
Fig. 7. The 10 comparators in Part A comprise two L-gorters tpat order
X and Y. (Note that each 4~sorter consists of two 2-sorters, i.e.
comparators, followed by a (2,2) merge network,) The three comparators
in Part B merge X = {xl,xa} and Y = {yl,y3} to form V_ = {vl,v3,
v5,vT}, while the three comparators in Part C comprisc a (2,2) merge

network for xe and Ye. The compgrators in Part D are those called

for in B3, which combine V0 and ve to form O.
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III. The [3,3] Merge Strategy

An obvious extension of the divide-sort-merge straiegy as described
above is to partition the N inputs into g > 2 groups that are sorted
separately and then merged together. /n N-sorter network that uses this

g-wvay divide-sort-merge strategy consists of g sorting networks of size

NsNps... Ny, where o8

1<1 Ny = N, followed by an (NI,NE,..,,N‘) merge

network. As an extension of Batcher's merge strategy, we can design

g-way merge networks that begin with d > 2 smaller g-way merge networks,

where d is a common divisor of Nl’NQ"

The two parameters g and d together define what we shall call

SRR

R e

the ]g!d] merge strategy. We say, then, that Batcher's networks described

in the last section use the [2,2] strategy.

A [g,d] (NI,NZ,...,Ng) merge network consists of d (Nl/d,...,Nz/d;
merge networks followed by whatever additional comparators are required
to complete the merge. We ghall call the network comprising these final

additional comparators the LE,QJ f-network. The [2,2] f-network, namely

the comparators listed in part B3 of Batcher's merge network, is par-
ticularly simple. Ia the remainder of thie section we illustrate a
procedure for designing ([g,d] f-networks for arbitrary g,d, by con-
sidering the case g =d = 3,

Suppose that we wish to design an i(m,n,p) merge network that will

combine the three sorted multigets X - [xl,xa,...,xm}, Y = {yl,y2,....yn}.

4

and Z = {zl,za,...,zp1 into the single sorted muliiset O = {°1‘°2""'

°m+n+p}‘ It m, n, and p are all multiples nf 3, then the [ ,3] merge

network consists of the following. (Scv Fig. 8.)

A Vﬁ)_‘J
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M31: an (m/3,n/3,p/3) merge network that combines X, =

{xl’xll-’ .o "xm-2]’ Ya = {yl’yh’ s - m."“_a}: and za =
[zl’zh""’zp-2} to form V_ = {vl’vh”"57m+n+p-z};
M32: an (m/3,n/3,p/3) merge network that combines X, =
[x2:x5,°-')xm_1}1 Yb = {y2’y5"”’yn-1}’ and Zb =
{22,z5,...,zp_1} to forr V, = {ve,v5,...,vm+n+p_1};
M33: an (m/3,n/3,p/3) merge network that combines xc =
{xgsxgyeeesy)y Y = {y3,y6,---,yn}, and 2 = (23, ,

followed by

Zgs--22zp} to form V_ = {v3"'6""’vm+n+p};

m34: the [3,3] f-network that we have yet to define.

Now the Zero-One Principle guarantees that, without loss of gener-

i 2 e

ality, we may assume that all members of X, Y, and I are either O
or 1. (To see that tluis 1is so, consider an (m+n+p)-sorter network that
consisis of: an m-sorter that produces the sorted multiset X; an
n-scrter that produces Y; and a p-sorter that produces 2Z; followed
by an (m,n,p) merge network.) When all members of X, Y, and Z are

either O or 1, we find that the number of . O's in Va, Vb, and

Vc satisfies

n,<m <n <n +3. (5)

g T e

Therefore, after the three j-~way werges described by M3l through M33,

the fnllowing situation exists: ’ .

1) Ve Vv and V_ are each ordered.

b)
2) The first 3n, elements of V are all 0.
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3) 1If n =n =mn, then the remaining elements of V are

all 1; otherwise, the remaining elements exhibit one of i

the following patterns followed by 1's,
&)0 if na=nb+1=nc+1;
b) 00 if n =m0 =n +1
¢) 0110 if n =n +2=n_ +2
d) 0010 if o =n_+1=n_+2;

a b < J
e) 00100 if n =18 =1 +2

= = M ‘ ‘

£) 0110110 if n =8 +3=n_ +3; , )
g) 0010110 if n =n +2=n_ +3; ? :
h) 0010010 if na=nb+1=nc+3;
1) 00100109 if n_ =n =n_+ 3. :

a b c
It is readily verified that patterns c¢) through i) are all sorted

by the following sequence of comparators,

V3n +3°V3n 47’ Ogm st-2
c c
Y30 +2°73n 4h? Osm st-1i ' .
c [+] (6) ) g
v3n +3:v3n 5 0'5 nc <t- 1; N
c c i
v3n +3:v3n1+‘+, 0< n,<t- 1, '
c c :

vhere t = (m+n+p)/3. These comparators constitute the [3,3] f-network.

The [3,3] strategy is illustrated by the l2-sorter in Fig. 9. The

inputs are iunitially partitioned into the three multisets [11’12'13’1h’

15,16], {17,18,19}, and {110,111,112} that are sorted separately,
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The networks required to sort these three multisets are each abbreviated
by double vertical lines connecting the appropriate comparands. The

(6,3,3) merge network begins with three (2,1,1) merge networks that form

va) vb,

single vertical line, are simply 4-sorters without the initial compara-

and Vc. These merge networks, which are abbreviated by a

tor connecting the pair from X. The remaining 11 comparators constitute

the [3,3] f-network defined by (6).

A Aol
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Iv. [g,d] Sorting Networks

For every pair of integers g,d > 2 we can construct N-sorter
networks using g small sorting networks followed by a (g,d] merge
network which, by definition, begins with 4 small merge netwprks. A
sorting network that begins with g sorting networks and d merge net-

works will be called a Lgldlfsorting neiwork, cven if the g sorting

networks and d merge networks do not employ the [g,d] strategy in-
ternally. For example, the 12-sorter in Fig. 9 is called a [3,3]
sorting network regardless of the construction of the initial 6-sorter
and the small merge networks.
In order to facilitate the general discussion of [g,d] sorting net-
works, we adopt the following conventions.
1) The purpose of an N-sorter network is to accept as input the
unordered multiset I = {11,12,...,1N} and to produce as
output the sorted multiset O = {01’02""’°N}’ where O is

a permutation of I and o, <o The Zero-0One

1 2

Frinciple allows us to assume, without loss of generality,

S eee S04
that all members of I are either O ox 1. We make this
assumption thronghout the remainder of this paper.

2) The g initial sorting networks, labeled B)s8pseeesBes each
operate on an integral multiple of d members of I. The out-
puts of these g sorting networks together form a partially
ordered multiset X = {xl,xe,...,xN}, where X is the smallest

output from 81s b4 is the second smallest output from 81

2

..., and x_ 1is the largest output from sg.

N

TR

ol . SR

Ll
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3) The Jt merge network, 1< j < d, operates on x

(1-1)d+j3’
1515N/d to produce v(i—l)d+j’ 1<1<Nd,

h) The [g,d] f-network operates on V to produce O.
The transformation from the unordered multiset I to the completely

ordered multiset (O may be summarized by

I g sort:l.ng_’ d merge > v f—network; 0.
networks networks

The [g,d] f-network is defined informally to be any network that will
complete the ordering of the intermediate multiset V achieved in the
[g,d] N-sorter network, N = td. Before giving a formal definitionm, let
us examine the partial ordering in V., It is convenient to consider V

to be a t x d array, where

V1,3) = V(a-1)a+j’ (7)

The t rows and d columns of V are given by

Via,*) & 1<3<d {"(1,3)}: 1<izsy (8)
Vir,3) 5 1<i<t {v(i,J) » 1g3gd (9)

Note that the column v(* 3)? 1< j<d, is completely ordered since
, -V =

its t members are the t outputs of m the Jth merge network,

h

J,

1f the kt initial sorting network By accepts n, O's as

inputs, then the uniform distribution of the elements of X among the

¥ iy Bk
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d merge networks guarantees that [(nk+d-J)/dJ of these n_ O's are

passed to merge network Therefore, the total number of 0's that

5°
goes into mJ, and into V(*,J), is given by

= z d-j)/d 1 . ' 10

"0 Ty Bl L(n+a-3)d], 1<3<d (10)

We may use Equation (10) to show that

n < n cee <M <n + g ‘11
(*:d) - (*:d"l) - - (*:1) - (*:d) & ( )
Equations (4) and (5) are special cases of (11),
We have seen that the d columns V(* j) are each ordered, The
2

following theorem specifies the remaining partial ordering in V,

Theorem 1:
Consider the Boolean multiset V = [vl’v2""’VN}’ where N = td.

Suppose that the d columns V( given by (9), are each ordered.

*,3)’
Then

a) the t rows V(1 x)" given by (8), are also each ordered
b4

if and only if the number of O's in V sacisfies

(*,3)

n <n < . ee <N ; 12
(*:d) - (*:d"l) - - (*:1) ( )
and
b the relation n <n + implies that
) T (*:1) - (*’d) & P
' <V 1 <1i<t-g. 1l
(1,9) = V(14g,1)’ sists (13)

A A




b)

The theorem is illustrated in Fig. 10, Since each column Vv

(*,3)
is ordered, the upper n(* j) elements of v(* J) ~ = that isg,
’ ?

v(i,J)’ 1<1< n(*,J) - - are all 0 and the remaining

t - n(*,j) elements are 1. If we draw a line from left to
Tight in V representing the step function h(j) = t - B 4y
then all elements of V above h are 0, whereas all eiements
below h are 1. Now the rows V(i,*) are all ordered iff
no 1 appears to the left of a O 1in any row, Clearly this is

the case iff the line h(j) separating O's from 1's is

non-decreasing, that is, 1ff

R 1) S P R(x,p) S eee S G gy (14)

(See Fig. 10(b).) Equation (14) is equivalent to Equation (12).

Since V 1is Boolean

o1 =t T Vie) S Vg (15)

Algo, since V is ordered,

(*,3)

v(l{J) =0 <> Bx,3) 2 i. (16)

t
Therefore, if n<*,1) < n(*’d) + g, then

W g R i

C s NS R

.

i and,

-
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V(1+g’1) =0 = n(*,l) > 1+g
= B(x,4; 2 1
= v(i,d) =0
= V,q) S V(1+g,1) (7)

Together (15) and (17) imply that V(1,4) S V(14g,1)"

Q.E.D,

Since the columns V(* 1) are ordered, and since n satisfies
2

(*,3)
(11), Theorem 1 and the transitivity of the relaticn "less than or equal

to" imply the following corollary,

Corollary 1:
let V = {vl,vz,...,vN}, N = td, be the intermediate multiset
achieved by the [g,d] N-sorter network T. Then for any multiset of
inputs to T, vV <V if
P *(1,3) = V(xys)
a) r>1 and 8> J; OR
b) r > i4g,
The partial ordering in V is illustrated in Fig. 11, foxr the case
= = = el to V representi
§=3, d=4, t =6, with ar arrow from v(i,j) o (r,a)* p ng
the relation v SV oye R. W. Floyd has pointed out that the
(1,3) = "(r,s)

partial ordering in V 1is exactly characterized by Corollary 1 and Fig. 11,

* Private communication.

S N gl M.
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Mg, 11.

Partial ordering in V

vhen g« 3,

d=b,

t-s‘
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A A A
By this we mean tkat it V = {vl,vz,...,vN} is any Boulean multiset that

satisfies the partial ordering specified for V by Corollary 1, then

there is at least one combination of inputs to T that achieves V = 3.

The sublety of this obeervaticn is best illustrated by a partial ordering
that is not exactly characterized. Consider the comparator network that
results irom removing comparators D and E from the 4-sorter in Fig. 1.

The partial ordering in the multiset O doea not include either o, < o

2" 3
or o, < o) . since o({o,1,0,1}) = {0,1,0,1} and o({1,1,0,0}) = {0,1,1,0}.
However, no combination of inputs will achieve O = {0,1,0,0}.

We have defined a [g,d] f-network informally as a network that will
coiplete the ordering of the intermediate multiset V achieved in the

[g,d] N-sorter network, N = td. The following is a more formal

definition.

Definition 1:

A sequence of comparators is called a [g,d] f-network for N = td

items if and only if it will complete the ordering of the multiset

V= {vl,ve,...,vn}, when a) the columns V( of V, given by (9), are

*,3)

each ordered and h) nx satisfies (11).

s3)
We can construct [g,d] f-networks for arbitravcy g,d by 1) using
(11) to determine what unsorted patternc of 0's and 1's remain in V;
and ii) finding a sequence of comparators that will order thege
unsorted paiterns. Following this procedure we have derived f-netwvorks

for g,d < 4; the best f-networks obtained are tabulated in Table 1.

P

(et
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A
Strategy f-network for N-sorter, N = td f (N)
[g,d]
[2,2] V(i,e)’v(1+1,1)' 1<1<t-1, N -1
V(i,a):"(1+1,1), 1 S i S t'l,
[2,3] v(1’3):v(1+1’2), 1<1<t-l; N=-3
Y(1,3)V(a41,1)0 1SS i
R R R I
Ya,2)V(,3r 1sSisw
V(i’u)=V(1+1,1), 1 .<- i S t-1,
(3,2] watumyy FSESEY N -3
v(i,l):v(i,E)’ 2 _<- i. S t"2.
Y1,3)V(ae2,1y 1SS TE
v 'V 1 <4< t-1;
[3,3] (1’2) (1+1)1)’ : - &N - 5
] - 3 '
'1,3) (an,2py TSt h v
'3 an,ny Tt

Table 1. Small f-networks
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Strategy f-network for N-sorter, N = td ?[g,d](N)
V1,73,
Vit-2,4) (e, 1)
¥(1,3)V (1,4}
Y(3,1)7(3,2)’
V(t-2,3) Y (t-2,4)°
Vit,1)V(t,2)} 2N-12, N=12
v(1:3')’v(1+2,1)’ 2<igt-3; oN-11, N>12
v(i,h)‘v(1+2,2)’ 2<1<t-3;
Vi1,2)V(1e1,1)0 15152
Vi, u) V(3 25iStL;
Vi1,3)V(a,1)y  1S1SEL
Vi, u)V(ae,ey  LSES L
Vi1,2)Y(,3)’ 2<1 gt
Vi) Ve,1)y 1St sl
Viy,2) V(weg,1)y 1SS ‘s
Vi1,2) V(44,1 1Stz tL

Table 1, (cont) Small f-networks.

-
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A
Strategy f-network for N-sorter, N = td b 4 -
(g,d]
v v H
(1,3)77(4,1)
v v ;
(¢-3,3)77(¢,1)
Vi1,2) V(14,1 251 <3
ﬁ '1,3)V(epjey ESES T
v v 1 <1< t-2; 2N-12, N=1Z2;
i i+2,1)’ -7 = ! ? '
[1‘_’3] ( )3) ( ) )
) 2 - - 4
NIRRT
. - i
w3 Yan,)y  PEts Tl
Y(2,1)V(2,2)°
v v . 2
(t-1,2) (t“l:3)
Y(1,3) V(2,1 PSSO
v(i,h-):v(i+2,2)’ 1 S i S t-2;
V(i,z):V(i+1,1), 1 S i S t"l,
v v 1 <1<t
[l 4] (1,4)°7(141,3)° - = oN - 11.
Y,3) V(a2 PSS TN
{ Via,u)Vae1,2)r PSSt
\') v 2 <1< t-1;
(1)2) (1.03)’ -
v(i,h):v(i*'l,l)’ 1 S i S -1, i
4
Table 1. (cont) Small f-networks,
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Except for the [3,4] and [4,3] f-networks, each of the tabulated
f-networks is completely described by a sequence of templates of the form
v(i,a):v(i+y,B) -- where 1<a,p<d, y>0, and Qa<yd+*p --
followed by a range for i, which is specified in terms of t = N/d. The
[3,4] and [4,3] f-networks are described by several specific comparators,
in addition to templates. Note that when N = 12, half of these specific
comparators are redundant and may be eliminated. For example, the second
comparator listed for the [3,4] f-network, namely v(t-2,u):v(t,1)’ be-
comes V(1,h)’v(3,1)’ which is the same as the first comparator listed.

Let f[g,d](N) represent the minimum number of comparators required
by a [g,d] f-network for N items. (Note that this function is only de-
fined when N is a multiple of d.) Since we have not proved that the
tabulated f-networks are minimal, we have labeled the number of compar-
ators that they require Q[g,d](N)' For each of the tabulated f-networks,

except the [3,4] and [k4,3] f-networks, we find that

A
f[g,d](N) = a[g,d]N - b[g,d], (18)

where a[ is (1/d) times the number of templates and brg a] is
L&)

g,d)
constant. The tabulated [3,4] and [4,3] f-networks are also described by
(18) for N > 12.

For large g,d 1it becomes increasingly difficult to derive an eco-
nomical [g,d] f-nefwork, since the number of patterns of 0's and 1's
allowed by (11) increases rapidly. Let P(g,d) represent the number of

patterns of O's and 1's consistent with (11), that is, the number of

different combinations of values that Bx,1)? n(*,e), cee n(*,d-l) can
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assurwe for each value of n(*,d). Witn n(*,j) abbreviated by nj,
we observe that
P(g,d) = b b T 1. (19)
S -
0y n,s<n +g nd5n25n1 ndSnd_ISnd_2
We may obtain a recurrerce relation for P(g,d) "y noting that
P(g,d) = T T T 1
< -1 - <
nd n15nd+g 1 ndsn2 n1 ndsnd_lsnd_2
+ z veo z 1
N SnoEN 4 ngSn SR o
= P(g-1,d) + P(g,d-1). (20)

The solution to (20), with the boundary conditions P(1,d) =d, P(g,1) =1,

is simply

pg,a) = (5gt). (21)

Note that (21) yields P(2,2) = 3 and P(3,3) = 10, which agrees with

our analysis of the [2,2] and [3,3] merge networks.

When N > gd, the problem of designing an f-network that will order
P(g,d) patterns of O's and 1's represents a considerable reduction ot
N

the original problem of designing an N-sorter network that will order 2

different input patterns, However, for large g,d, we find that P(g,d)
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becomes too large to permit an exhaustive test of a proposed design for
a (g,d] f-network. Therefore, for large g,d we must build f-networks
in such a way that we can prove by construction'" that they complete the
ordering of V. Suitable procedures for constructing large [g,d]

“-networks are given .n the next section,
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V. Constructing Large [g,d] f-networks

Our approach to the problem of deriving large sorting networks and
large [g,d] merge networks is to build them out of smaller sorting net-
works and smaller merge networks. We use the same approach to the
problem of designing large [g,d] f-networks. We will present two
construction metiods in the form of thecrems. Theorem 2 below describes
a procedure for constructing a [g,sd] f-network using d smsll [g,s]
f-nefworks and one [g,d] f-network. Thecrem 3 describes a similar
procedure for building an [sg,d] f-network out of s small [g,d] and
one [s,d] f-networks. We may use these constructions and the f-netwcrks
given in Table 1 to achieve f-networks for arbitrarily large g,d.

Before giving the theorems, we will descrihe an example, Suppose
we desire fo construct a [3,€] f-network for the [3,6] 18-sorter net-
workf The partial ordering in the intermediate multiset V is depicted
in Fig. 12(a). In Fig. 12(b) we have isolated the partial ordering in
the even members of V. Clearly a [3,3] f-network will order Vé;

.similarly, another [3,3] f-network will order V.
The partial ordering depicted in 12(a) guarantees (by Theorem 1)

that

(22)

B(,6) S (x,5) S0 SP,1) Shwe) T

The number of O's in Vo and Ve are given by

o T P%,1) T U(%,3) T (x,5)

e = Px,2) * P(wu) T (x,6)

o, . M
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(a) Vv for [3,6] 18-sorter,

(b) Partial ordering in Ve.

Fig. 12.
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so that

(3x,5) = B(x,6)) * (Bw,3) = Bee,i)) * (B(x,1) = P(x,2))

=n -n <

b " e = P(x,1) T "(x,6) < 03 . (24)

Therefore, a [3,2] f-network will complete the ordering of V, once Ve
and Vo have each been ordered. |

Siuce the two small [3,3] and one full-sized [3,2] f-network will
complets the ordering of V, they together constitute a [3,6] f-network,
The resulting [3,6] 18-sorter network is given in Fig. 13.

For Theorems 2 and 3 below it is convenient to consider the multiset

V= {Vl;VE;---:VN} , N=pqr, tobea PpXgXxTr array, where

Vii,3,k) = V(i-1)qre(-1)rek’ | (25)

Submultisets of V include the pq "rows,” pr "columns,” . and gr

"verticals" defined, respectively, by

Y(4,3) T 1<kgr {v(i,_j,k) y 121i<p, 1232
v(i:*)k) T <3< {V(i,J,k)} , 1<1<p, 1<k (26)
V(*,J,k) = 1<i<p {v(i’J’k) y 1<jJ<q 1<k<r.

Larger submultisets of V include the p q X Tr "planes', the q p X r planes,

and the r p x q plares defined by

¢ L e

PO
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V(*’*’k) = v \o-- v(1 k) ’ 1 <k« r,
1<i<p 1<jy<q] ‘Mo =
v v = v u v
* 1<3)<aq;
(*,3,%) 1<t<p ISRSr{(i’Jk)}, J<q; (27)
v
(1,*,*) = u v V(i 3 k) ’ 1<1<p.
1<3<q 1<k<r i - -
For example, if we consider the intermediate multiset V for the 3,6]
18-sorter (Fig. 12) tobea 3 x 3 x 2 array, then
v H
(1,2,1) = 3
Vix,2,1) = UVpVgrvishi (28)
V(*’*’l) = Vo.

We are now ready for Theorems 2 and 3.

Theoxem 2:
Let the multiset V = {vl,vz,...,v“}. where N = tsd, be considered

a txsxd array., Then the following small f-networks together

constitute a [g,sd] f-network for V.
1) d [g,s] f-networks for V(* *,k)? 1 <k <d; followed by
272

11) one [g,d] 2-network for V.

P Rt

e ande A




Proof:

According to Definition 1, the sequence of comparators represen.ed
by 1) and 11) is a [g,sd] f-network for V if and only if it wilil
complete the ordering of V given that: a) the planes v(*,j,k)'
1<3<s, 1<k<d, are ordered; and b) n., satisfies

ERILY

n < cae <
(*,s,d) - n(*:s)d'l) = = n(*:sal) = n(*:s‘lid) =

n(*,s—l,d—l} <« < n(*,l,l) < n(*,s,d) +g. (2s)

Let us assume that the partial ordering ‘nu V satisfies con-
ditions a) end b)., Then since the submultisets Vix, 3,k) of v(*,*,k>

are ordeied and since n satisfies (29) a (g,s] f-network will

(*,3,k)

Now the number ¥ < 's in V( . both before

i order V, ‘
*,+,k)

(*,%,k)°
and after the application of the [g,8] f-network) is given by

n AY
(*:*:k)

For any two indices kl,k2 sutisfying 1 < kl < k., = d, we may use

(29) to show that

z n . - n .. ,'\ i n i n
= 1<3i<s ( (*’J’kl) \*;Jsﬁg) <*,*,k1) N
= " " Se- 31,
= (*1,1) (*,8,d) =

Therefore, once the [g,s] f-networks have ordered thz planes V(*’{’kl.

(31) guarantees that a [g,d] f-network will complete the crderirg ¢f V,
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We have seen that if the partial ordering in V satisfies con-
ditions a) and b), then the d [g,s] f-networks in 1) followed
by the [g,d] f-network in 1ii) will complete the ordering of V.
Therefore, 1) and 1i) together constitute a [g,sd] f-network,

Q.E.D,

Theorem 3:
Let V be as in Theorem 2, Then the following small f-networks

together constitute an [sg,d] f-network for V.

i) s [g,d] f-networks for V 1 < Jj < s: followed by

(%,3,%)

i1) one [s,d] f-network for V.

Proof:

The proof of Theorem 3 is similar to that for Theorem 2 and is

given in Appendix A.

The partial ordering in the intermediate multiset V for the {3.2,3]
18-sorter is given in Fig. li. The construction method described by

Theorem 3 requires a [3,3] f-network connecting the three odd rows

o I'4 - ‘ 1 ’ A\‘
oz V \v(*,l,*)) and a [3,3] f-network ror the even rows (V(*,z’*)/,

followed by a [2,3] f-network. The resulting [6,3] 1b-sorter network
is given in Fig, 15,

We many count the comparators required by the f-networks constructed

according to Theorems 2 and 3 to obtaln the following important corollary.

NI S St o o e
-~ o =
N "W, Sk




4o

Fig. 14,

V for the ([6,3] 1E-sorter.
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Corolliary 2:

f[g,sd](N) < d.f [g’a](N/d) + f[g’d](N); (32)

frog,a)(M) S 1 g g (W) + frs,a3(M)- (33)

The inequality is required in Corollary 2 since we have no guarantee
that an f-network éonstructed using Theorem 2 or Theorem 3 is minimal,
In fact, t.e [3,6] f-network exhibited by the 18-sorter in Fig. 13
is not the most economical [3,6] f-network kmown, We may use Theorem 2
with 8 =2, d = 3, to build a [3,6] f-network out of three [3,2] and

one [3,3] f-networks. Using Table 1 we see that this f-network requires

A A A 7
£ = 1 ==N-1
3,61 =3 T3,2(V3) + 3,500 = g N - 3 (34
comparators, whereas the f-network in Fig. 13 requires % N-13 =29
comparators. {(However, a slight modification of the [6,3] f-network

1

illustrated in Fig., 13 reduces the number of comparators to 3 N - 15.)
The number of comparators required by the best f-network that can
be constructed out of smaller f-networks using the construction of

Theorem 2 and/or Theorem 3 is neatly summarized by

A
2 d](N) = min min F(g,d,N,q,p)}, (35
& 1<q<g l1<p<d
gmod q =0 2<q+0p
’ dmod p =0
where

A
F(g,d,N,q,p) = q.p.?[‘/q,d/p](N/(q-P)) + f[q’p](N)

A A
+ q-f[g/q’p](N/q) + p-t[q’d/p](N/P) . (36)
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[8:
describes a construction that uses only Theorem 2; b) if p = 1 then

A A
Note that f 1:'(N) = f[l,d](N) = 0, so that: a) if q = 1, then (36)

(36) describes the use of Theorem 3 alone; and c) 1f p,q > 1, then (36)
describes a network built using both theorems, The case p =g =1
is not allowed, since it would reduce (35) to an identity.

We may use the construction methods of Theorems 2 and 3, along
with the f-networks in Table 1, to achieve [g,d] f-networks for all
g,d of the form 2133.* When g and/or d have prime factors greater
than 3, we may construct a [g,d] f-network as follows: Using Batcher's
general method we obtain a [2,d] (2d)-sorter network. This (2d)-sorter
will, of course, exhibit all of the templates required by any {2,d]
network. We may use the [2,d] f-network and Theorem 3 to derive a
[Ei,d} f-network, where g < 21. From Definition 1 it is clear that a
[21,d] f-network is also a [g,d] f-network for all values of g < 2!,
(This is because the unsorted patterns remaining in the intermediate
set V for the [g,d] sorter are a subset of those remaining in the
[21,d] network, if g < 21.) Therefore, we may construct [g,d] f-networks
for arbitrary g,d.

We will conclude this section by calculating the number of compara-
tors required by the [gi,dj] f-network constructed using Theorems 2

and 3. From Equation (35) we obtain

# Note that these construction techniques are illustrated by networks
in Table 1: the [2,4] f-network illustrates Theorem 2, while the
[4,2] f-network illustrates Theorem 3.




. |
¢ =  min min F(g,d,N,g" ds)‘ (37)
. = b b .
ehe'] o<r<i 0<s<] T
“ O<r+s

A
Since f[g d](N) is linear in N for all of the tabulated f-networks,
)

we expect a solution to (37) of the form

A
f N) = - . 8
[si,dJ]() "ty b[s’,dJJ (5°)

Ussiug (36) and (38) in (37) we obtain

a = min min a + a
i i- - s
(eha!] o<r<t oO<s<i|le a0 e, e |
OC<r+s ‘
+ a + a s (39)
i-r s - !
CR s B P Sy
r.s
b = max max gdb + b
[gi,dj] 0<r<i 0<s< [gi'r,dj's] [gr,cs]
O<r+s
r s
+agb +db . (40)
i-r s r j-s
[8 ,d ] (s :dJ ]

Equations (38)-(40) describe the number of comparators required
by a [gi,dj] f-network built out of smaller f-networks using Theorem 2
and/or Theorem 3, Most of the best [gi,dJ] f-networks known exhibit

this construction a. . are, therefore, described by (38)-(LO).




For many values of g,d, all of the best [gr,ds] f-networks known
(0<r<i, O <s8<J, O0<r +s) are constructed from the [g,d]
f-network by repeated use of Theorems 2 and 3. In this case the solutions

to (39) and (LO) are
= 1i-j.a ; (b1)
(e,d]

1,y
. (g-V{a-1) (42)

b .
(et a%] (g-1)(¢-1)  [g,d]

a
i
s :dJ]

From Table 1 we observe that a =2, b =11 h
[k, 4] s [h,h] » Whereas from

Equations (41) and (42) (evaluated with g =d =1 = j = 2) we find that
the [4,4] f-network constructed from the [2,2] f-network according to
Theorems 2 and 3 requires a = Lka =2, b = gb = 9,

3 red (4,4) = 2,21 =% Pu,u) = Pra,e) =0
The (4,4] f-network given in Table 1 is the smallest example of a
special procedure which has been discovered for constructing [2k,2k]
f-networks [ T ]. The special procedure is too complicated to include
in this paper. Basicaliy, it requires; a) determining the templates

required by the [2k,2k] f-network derived using Theorems 2 and 3; and

b) reordering these templates in such a manner that, although the result-

ing network still orders V, some of the comparators have bacome
"redundant” and may be removed. Since the snracial construction does not

reduce the number of templates, & kK k is given by (hl), evaluated with
(e,27]

g =d=2 and 1 J = k. However, the constant term is increased to

_ b - 2
b = 3b 328+ 4, (43)

-




which represents a reduction (since b[g d] in (38) is preceded by a
b

minus egign) of rv% hk comparators. When g =d =2 and 4 # j, the
best [21,23] f-networks known use the special [Ek,2k] f-networks as
building blocks for the construction methods described by Theorems 2

and 3, The coefficient b[21 2j] is obtained from (40).
b

A
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VI. The Econony of [g,d] N-sorter Networks
We have defined a [g,d] N-sorter network to consist of g sorting

L g

networks of size N1’N2""’Ng’ where N1 is an integral multiple of
d and I , N, =N, followed by a (g,d] (NI’NE""’Ng) merge network,
Since Ni is required to be a multiple of d, we cannot construct a

[g,d] N-sorter network uuless N is a multiple of d. This limitation,

which was included since it greatly simplifies the description of [g,d]

merge networks and [g,d] f-networks, can be removed, In [3,5 ] a /
procedure is given for pruning an N-sorter network, that is eliminating

one input lead, one output lead, and several comparators, to achieve an

(N—l)-sorter network. For arbitrary N we can use the [g,d] strategy
to achieve an N-sorter network by 1) deriving the [g,d]) (d[N/d])-
sorter network and 2) pruning as necessary. If we extend the defi-
r nition of a [g,d] N-sorter network to include the sorting networks
achieved by pruning a [g,d] sorting network, then for all values of N
cxcept N = 10,13,14,15,16, or 18, the most economical N-sorter known
is a [g,d] sorting network,

) merge

’

We can also use pruning to achieve a [g,d] (NI’NE""’N
network when not all of the Ni are integral multiples of d. Let

M[g d](Nl’NE”"’Ng) represent the number of comparators contained in
)

the (Nl,Nz,...,N‘) merge network achieved by pruning (if necessary) the
(g,d] (dil/d],d[Nz/d],...,d[Ng/d]) merge network, Theu the minimum )
nuuber of comparators required by a (NI’NE"'°’N3) merge network con-

structed using any [g,d] strategy is given by

u‘(Nl,Nz,...,N‘) = m:.'n u["dj(nl,n,‘,,...,ng). (Ly)




It is instructive to ask which values of g and d yield the most

economical N-sorter networks. Let sg(N) represent the number of com-
parators required by the most economical N-sorter that uses g sorting
networks followed by a [g,d] merge network., In order to permit a valid
comparison of networks achieved with different values of g, we will
require that each of the g 1nitia1‘sorting networks must itself use
the g-way divide-sort-merge strategy, so that Sg(N) satisfies the
recurrence relation

Sg(N) = min [Mg(Nl,...,Ng)+ f Sg(Ni)}. (45)

N.+...*N =N 1<
1 g -

N1 >1

<eg

We have calculated Sg(N) for g =2,3, and 4 and N < 36; the
results are given in Table 2. The last column, labeled Q(N), gives
the number of comparators contained in the most economical N-sorter known
of any construction, An asterisk indicates those values of Q(N) which
represent an 1mprovement* over the most economical networks previousiy
reported [ 5 ].

From Table 2 we observe that S3(N) is only occasionally smaller
than Batcher'e result, B(N) = SQ(N). However, Sh(N) < SQ(N) for all
N > 8, and the [4,d] N-sorter networks are more economical than any

previous N-sorter, for N > 3k,

* The improved 18-sorter, which does not use a [g,d] strategy, is given
in Fig. 16, The improved 26-,27-,28-, and 34-sorters all use two
initial sort units, one of them the particularly efficient lb-sorter
designed by M. W. Green, followed by Batcher's [2,2] merge network.
The best 35-sorter is achieved by pruning one lead from the (4,9}
36-sorter; the vest 36-sorter uses the [3,12] strategy.

T




N

O ®© =N o v Fow

10
11
12
13
14
15
16
17
18

12
16
19
26
31
37
41
48
53
59
63
T
82

Table 2,

12
17
21
25
32
37
L2
51
5T

-TO

76
81

s‘(u) for g<k,

[

12
16
19
25
30
35
39
k7
52
57
61

73
80

N < 36.

12
16
19
25
29
35
39
46
51
56
60

T9*

49

s el




19 91 93 89 88 ’
20 97 101 9% 93 i !
21 107 108 104 103 f
22 114 117 110 110
23 122 125 118 118
2l 127 131 123 123
25 138 141 135 134 '
26 w6 148 143 141 {
27 155 154 53| 150%
28 161 168 157 156%
29 171 178 158 166
30 178 187 174 172
31 186 197 182 180
32 191 204 187 185
33 207 214 203 203
34 219 226 214 213*
35 232 234 205 225+ L |
36 241 241 233 232w

Table 2 (cont.) ' é

A
' This value of 8(N) describes an N-sorter network that is more
economical than any N-sorter previously reported {5)].
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We may discover the asymptotic growth of Sg(N) by considering the

case N = gk+1. For all values of g tried we have found that the

minimum in the right-hand-side of (45) occurs when N =Ny =...= gk,

so that

k k
= 8 8,08") + M (a8 .. 8", (6)

k k
We have also found that the most economical [g,d] (g ,gk,...,g ) merge

network known is achieved using d =g, so that

k k k k
Mg(g seees8 ) = M[g,g](g yeeesB )

k-1 k-1, A k+1
= 8 Mg(g TEXEF] 4 )+ f[g,g](g ) (47)
The solutions to the recurrencc relations given @ {(47) and (4€),
14
with the boundary condition Sg(g) = Mg(l,l,...,l) = 8(N), are
K K Kk+1 _
M (8...,8) = (eok+a + Bg) 8 + (8- 1)ygs (48)
k 2 k
= - L4
s (g) (k™ +pk +y)e \ (49)
where
= 0
% t'[tb:]’ (50)
-1 A S YIRRRL 3 1
ﬂ‘ = g 8(g) - i‘tc,‘] g (¢ 1) b[‘,‘]: (51)

ST L [

e
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y. = (¢ )2

g b[g}g]. (52)

The asymptotic growth of Sg(N) may be oktained from (49); it is

given by

54 (M)

I

2 .
Q N(log N + N{log N + N + 0(1
g( sg) 5g( g Yg (1)

-2 2
o&(logeg) N(logzN) +
£ (log g)_l N(log.N) + N + 0(1) (53)
g 2 2 Yg . )3/

We may obtain the coefficients a[g g and b[g g] from Table 1 and use
b 2

them in Equations (49)-(53) to show that

SQ(N) = I%N(logaw)2 - ,}N(logzn) + N + 0(1);
S3(N) = ,265 N(logeN)a - .315 N(logaN) + 1.25N + 0(1); (54)
Sh(N) = It-n(m.;en)2 - -31-N(1ogan) + -1§1~N + 0(1).

Since the leading coefficient for 83(N) exceeds that for both SE(N)

and Sh(N), it is not surprising that 83(N) is generally larger than
the other two. Also, although the leading coefficient is % for both

SQ(N) and Sh(N)’ the coefficient for the term N(logeN) is smaller

for s&(N). This explaine why Su(N) is smaller than 82(N) for

sufficiently large N, that is, for N > 8.

L e T s et SRR




From (50) and (53) we observe that the coefficient for the term

2 .
N(1og2N) in the expansion of Sg(N) is

ag(h‘a‘)-a = %(1°32‘)-2 2g,g]" (55)

When g = 2", we may use (41) to show that (55) reduces to £.  However,
for all [g.g] f-networks known, a[g,g] > 5(10323)2 if g is not a
power of 2. Therefore, the leading coefficient in the expansion of Sg(N)
is minimized - - and its value is f - - if and onlv if g 1is a power of 2,
In view of the above observations we coaclude that the most economical
N-sorter networks are achieved when g 1is a power of 2. Furthermore, we
might hope to achieve successive reductions in the asymptotic growth of
Sg(N) by chcosing g = 2° (whirh maintains a leading coefficient of $),

for successively larger r. Therefore, we use (50)-(53), along with

28,87 5,67 216,167 ™ Ppe,i6] Even by (41) and (43), snd

with S(8) =19 and 8(16) = 60 obtained from Table 2, to derive

SB(N) = %N(logeN)e -;-N(logeN) + %N + 0(1).
(56)

816(N) = lt-n(mgzn)2 - -;-(&) N(logzN) + %N + o(1).

Comparing these results with (54) we observe that for sufficiently large
N, SS(N) > sh(N) > 816(N). And, trying g = o for successively larger
values of 1, we find that successive improvements occur only wvhen r 1is

itself a power of 2, so that the first improvement over 816(N) occurs

when r = 23 8, or g= 28 = 256.
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The most economical (22r)—sorter network known, when r = 2° > I,

A .
uses the [27,2] strategy, so that S(22r) =8 r(221). (See [ T ]1.)
2

We may use this observation to eiliminate S(22r) from the right-hand-
side of (51), evaluated with g = 2¢r, thereby obtaining
-2

r 2r
Bop = 2° 8 (27) - 4
22r 2r [22r,22r]

R CaER IR (57) )

2 R .
[ 221" 22!']

Using (41), (49), (50), (52), and some algebra we can reduce {57) to the

following recurrence relation for the coefficient g r
2

-2r b o
= 1-2 2 -1)b
Begr QBEr + )3 ( ) [2r,2r]

- 2T

A

The solution to (58), with b x k. Biven by (43) and with the boundary

(e5,27]
71/48 obtained from (51), is

condition 516

Se” = - (%% +o,) 3 (59)
when r = 2s and
£ <
o, = % . o(@rh), (60) |
s 0 < {<s




=5

From (43) and (52) we obtain

o @I s @

Since o rapidly converges to ,107 and since vy i - 2—r)/3,

A 2
we may achieve a growth rate for S(N) of

A
S(N) = .250 1\1(105;2N)2 - .372 N(IOggN) + 1.333 N + O0(1). (62)

Equation (62) represents an improvement of order N{logN) over B(N) =

o
SE(N)’ which exhibits the smallest growth rate knr~vn previously. Further-
more, the minimum growth rate of (62) is nearly achieved by 816(N), since

the coefficient of N(loggN) in (56) is -.370.

LaiAYEL 2 . FE

s ke A




- {

i s A 3 O TR TS 25 [

57

Vil. Conclusion

The strategy used by most of the best previous N-sorter networks
is to divide the N inputs into 2 groups, sort these groups separately,
and then merge the results, The best merge networks, suggested by
K. E. Batcher [ 4 ], partition each sorted multiset into 2 divisions, merge
each divisior of the first so-ted multiset with one of the second, and
then use ﬁN—l comparators to resolve the remaining ambiguities,

Our results demonstrate that greater economy can be achieved ir
N-sorter networks by dividing the N 1inputs into g > 2 groups that
are sorted separately, and by partitioning each sorted mul‘iset into d > 2
divisions to. be combined by d merge networks, In particulsr, we have
shown that by using g = d = 4, we can achieve N-sorter networks that
are more economical than Batcher's for N > 8 and that are more ?conomi-
cal than any networks previously designed for N > 34, We have indicated
that even greater savings can be achieved by using g = d = 2r, where

2s > 4; however, these constructions are only applicable for

r =
N_>_g-d =’+r.

Our N-sorter networks require order N(logEN) fewer comparators '
than the Lest previous networks. However, we have not beer able tc im- | “

prove upon the asymptotic growth rate of iN(logeN)d achieved with
Batcher's construction. As noted above, the coefticiont for the term ‘

N(logeN)2 with our construction is giveun by

-2 ., -2
08(10323) = tlogg) "egl’

Since 6] is (1/g) times the number of templates requirad by the
2

T




(g,8] f-network, we could reduce the coefficieat of the term N(logaN)2
by comstructing an improved (g,g] f-network that i1equired fewer than

i(logzg)2 templates, However, in Appendix B we show that
f,aq® 2 -ah)N - (a-1), (64)

so that a[g g] >0 and a% > 0. Therefore, the [g,d] stratesy must
’

require order N(logzN.)2 comparators.

IR L L
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Appendix A: Proof of Theorem 3 1
The proot of Theorem 3 is facilitated by the fcllowing two lemmas, |

Lemma 1:

7" the rows V ) of an r x d array V are ordered, then the !

(1,%

columns V,
%4

) are also ordered if and only if

n <n <.,..<n . 6 .
(%) S P(r-1,%) S *00 S (1) (65)
4
Proof: Lemma 1 follows from Theorem 1 by symmetry. oo
o
Lemma 2:

Suppose that the t x s planes v( of the t x s x d array

"r*:k)

V are ordered, Tien if we sort the t d planes V( %)’ the t x s

*53s

planes remain ordered.

Proof:

Assume that V(* is ordered, 1 < k < d. Then the columns
y =

*,k)
1<1i<t, and the verticals V(

V(iy#,k) ) 1< Jj<s, are also

ordered, since they are all submultisets of V(

* 3,k

*,%,k)° Therefore, by

Theoren 1,

{66'
n(*;':k) < n(*:"l:k) Seee S n("l)k) ) (be)

Summing (56) for 1 < k < d we find that

< e <n . ‘37)
n(*;‘:*) < n(*;"lt*) - -~ (')1:') (
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Now suppose we sort the t x d planes 1< J<s, We

v .
(*)J}*I’
need to show that this operation leaves the planes V(* * P) ordered.
I A e

Clearly sorting V does no* alter the number of O's in V(*

(%5 1,%) 23,%)
n(* 1,%) satisfies (57) after the t X d planes are sorted.
 J)

Also, once V(* 3
2J2

therefore,

*) is sorted, the n(* O's are divided among the

)J’*)

rows v( according to

1,3,%)

0 it € [0, (1-1)a];

B(%,9,%)

M1,3,%) T Y% T U(%,3,%)

d BN, g,x) € L0t

(1-1)a  if € [(1-1)d,1d]; (68}

Equations (g7) and (68) together imply that

Ble,a,%) S P(t,e-1,%) S 0 S B¢, 1) S B(t-1,8,%) S
n(t“‘;s'l,*) '<" T '<' n(l) 1;*). (69)

We can consider V to be a ts x d array with ts "rows" v(i,J,*)’

1<i<t, L<j<s, andwith d "columns" v(* *,k)’ 1<k<d
- = »7s

Sortin \'
® o (*;J)*)

multicfets of V(

orders the "rows" V(1 | w)» because they are all sub-
1Y2 s

. It v is initially ordered, then sorting
*,3,%) (¥*,%,k) ’

V(*’J’*) leads to (59). Now by Lemma 1, if the "rcws v(i,J,*) are

ordered and n satisfies (69), then the "columns” V(* *,k) are
I A

(3,3,%)
also ordered. Therefore, if V(* *,k) is initially ordered, then sorting
272

v leaves V ordered.
(*JJJ*) * * (*)*lk)

Q.E.D.

ol Nl b it
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We are now ready to prove Theorem 3.

Theorem 3:

Let the multiset V = {vl,vz,...,vN}, where N = tsd, be considered
a txsxd array., Then the following small f-networks together

constitute an [sg,d] f-network for V,
i) s (g,d] f-networks for v(* 3,%)? 1< 3<s; followed by
’d> - -

ii) one [s,d] f-network for V,

Prooi:

According to Definitica 1, ta1e sequence of comparators represented
by i) and i) is an [sg,d] f-network for V if and only if it
will complete the ordering of V given that: a) the d planes
V( | 1<k <d, are ordered; and b) n(*,* satisfies

*,%k)’ ,k)

B(x,%,0) S P(x,x,ae1) S 000 S 00x,x,1) S Pk n,a) t 08 (6

Let us assume that the psrtial ordering in V satisfies con-

ditions &) and b), Then, since Vix, is ordered, each of the
b4

k)

,

submultisets V(* 3,k)’ 1 < J<s, is also ordered, In addition, the dis-
2Js - =

tribution of the n

O's among the verticals V, satisties

(*,%,k) *,3,K)
Bgw) " (e e/ 8f (T
We may use (70) snd (71) to show that

B(#,3,4) S P(x,3,0-1) S 00 S P, 0,1) S V(w,3,0) T E (12)

s S
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Since the d submultisets V k)’ 1<k<d, of V( ) are ordered,

(*’J, *,J’*

and since n satisfies (72), a [g,d] di-network will order

(*’J)k)

v .
(*}J’*)
Lemma 2 implies that the [g,d] f-networks that order the t x d

planes V(*’J’*) icave the t x s planes V(*,*,k) ordered. Furthermore,

once V(*,J,*) is ordered, the distribution of the n(*’d,*) 0's among
the verticals v(*,j,k) satisfies
= , d -k d|.

ST IR (ORISR (73)

Equatioa (73) implies that
eea 1.

B(%,3,0) S T, g,0-1) S 0t S 0004,1) S R (xg,0) ()
Summing (74) for 1< j < s we obtain

B(x,%,d) S Pnw,ae1) S0t S Pepn1) S00n0,0) tE (75)

Therefore, since the ([g,d] 2-networks for v(* leave the planes

1»3r%)
V(% k) ordered, (75) guarantees that an [s,d] f-network will complete
the ordering of V.

We have swen that if tne partial ordering in V satisfies ron-
ditions a) and b), then the s [g,d] f-networks in 1) <fullowed
by the [s,d] t-n;twrk in 1i) will complete the ordering of V,

Therefore, 1) and 11) together constitute an [sg,d] f-network.

Q.S.D.

A

T e e T T e

el A o iy
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Appendix B: A Lower Bound for £ (N)
(g,d]"

In this appendix we calculate a lower bound for f the

[g,d]\N}’
number of comparators required by the most efficient [g,d] f-network

for the set V = {vl,v ,...,vN] , where N = td, t ~g>2., Letr

2

and s be any two integers satisfying 1 < r < t-1, 2~ s < d, Then,

by definition, a [g.d] f-network will complete the ordering of V if

the columns V(*,J)’ 1<j<d, are ordered and if

n *’1) ES r+1;

- r, 2< § i s~-1; (76)

"(*,J;. g A

nk*’J/\ = I'-']., SEJ - d.

From (76) we see that V is ordered except that the O at position

hould be moved to . Si dl f- i11
v(r+1,1 ) 8 ve V\r,s) Since a [g,d| f-network w

complete the ordering of V, it must include a comparator or a sequence

of comparators that provide a path from V(r+1 1) to V(r 8)°
) 2

Now a comparator can only move a O in one position of V to a
position labeled by a smaller irdex. Thercfore, x {g,d] f-network must
contain either the comparator V(r,.):V(r+1’1) or else the comparator
v 'V where 8 < jJ < d and where the f-network includes a path

(ry8) ' (r,3) = P

from V( to V(r 3)° 3ince r and s are arbitrary integers
’

r+1,1)
satistying 1 <r < t-1, 2 <s< d, we have shiwn that

iv

(t-1)(d-1,, g,d> 2, (17:

gtﬁad](td)

e it e
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or, using N = td,

fg,a® 2 A-dHN - (@-1), gage (78)

For g > 2 and/or d > 2 (78) does not provide a very tight bound

for f[g d](N); indeed, it is not at all the greatest lower bound known,
b
However, (78) is sufficient to show that o e gl >0 and a > 0, so
’

that th> number of comparators required by a [g,d] N-sorter network grows

as N(logeN)a.
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